Home Write to the Editor
Biochemistry news, hot off the press Society news, hot off the press Conferences, meetings, seminars, courses Jobs Grants, awards Read or write one! Current edition of The Biochemist

22 November 2012

Stem cells develop best in 3-D

Scientists from The Danish Stem Cell Center (DanStem) at the University of Copenhagen are contributing important knowledge about how stem cells develop best into insulin-producing cells.

Stem cells are responsible for tissue growth and tissue repair after injury. Therefore, the discovery that these vital cells grow better in a three-dimensional environment is important for the future treatment of disease with stem cell therapy.

“We can see that the quality of the cells produced two-dimensionally is not good enough. By putting the cells in a three-dimensional environment and giving them the proper growth conditions, we get much better results. Therefore we are developing a three-dimensional culture medium in gelatine in the laboratory to mimic the one inside an embryo,” says Professor Anne Grapin-Botton from DanStem at the University of Copenhagen, who produced the results together with colleagues from Switzerland and Belgium.

The international research team hopes that the new knowledge about three-dimensional cell growth environments can make a significant contribution to the development of cell therapies for treating diabetes. In the long term this knowledge can also be used to develop stem cell treatments for chronic diseases in internal organs such as the liver or lungs. Like the pancreas, these organs are developed from stem cells in 3-D.

The research team has investigated how the three-dimensional organisation of tissue in the early embryonic stage influences development from stem cells to more specialised cells.

“We can see that the pancreas looks like a beautiful little tree with branches. Stem cells along the branches need this structure to be able to create insulin-producing cells in the embryo. Our research suggests that in the laboratory beta cells can develop better from stem cells in 3-D than if we try to get them to develop flat in a Petri dish,” explains Professor Grapin-Botton.

“Attempts to develop functional beta cells in 2-D have unfortunately most often resulted in poorly functioning cells. Our results from developing cells in 3-D have yielded promising results and are therefore an important step on the way to developing cell therapies for treating diabetes.”

The paper ‘Planar Cell Polarity Controls Pancreatic Beta Cell Differentiation and Glucose Homeostasis’ has just been published in Cell Reports.



 
Biochemical Society Homepage More top news stories
First detailed picture of a cancer-related cell enzyme in action on a chromosome unit
New study uses DNA sequences to look back in time at key events in plant evolution
Synapses always on the starting blocks